Unloaded speed of shortening in voltage-clamped intact skeletal muscle fibers from wt, mdx, and transgenic minidystrophin mice using a novel high-speed acquisition system.
نویسندگان
چکیده
Skeletal muscle unloaded shortening has been indirectly determined in the past. Here, we present a novel high-speed optical tracking technique that allows recording of unloaded shortening in single intact, voltage-clamped mammalian skeletal muscle fibers with 2-ms time resolution. L-type Ca(2+) currents were simultaneously recorded. The time course of shortening was biexponential: a fast initial phase, tau(1), and a slower successive phase, tau(2,) with activation energies of 59 kJ/mol and 47 kJ/mol. Maximum unloaded shortening speed, v(u,max), was faster than that derived using other techniques, e.g., approximately 14.0 L(0) s(-1) at 30 degrees C. Our technique also allowed direct determination of shortening acceleration. We applied our technique to single fibers from C57 wild-type, dystrophic mdx, and minidystrophin-expressing mice to test whether unloaded shortening was affected in the pathophysiological mechanism of Duchenne muscular dystrophy. v(u,max) and a(u,max) values were not significantly different in the three strains, whereas tau(1) and tau(2) were increased in mdx fibers. The results were complemented by myosin heavy and light chain (MLC) determinations that showed the same myosin heavy chain IIA profiles in the interossei muscles from the different strains. In mdx muscle, MLC-1f was significantly increased and MLC-2f and MLC-3f somewhat reduced. Fast initial active shortening seems almost unaffected in mdx muscle.
منابع مشابه
100-fold but not 50-fold dystrophin overexpression aggravates electrocardiographic defects in the mdx model of Duchenne muscular dystrophy
Dystrophin gene replacement holds the promise of treating Duchenne muscular dystrophy. Supraphysiological expression is a concern for all gene therapy studies. In the case of Duchenne muscular dystrophy, Chamberlain and colleagues found that 50-fold overexpression did not cause deleterious side effect in skeletal muscle. To determine whether excessive dystrophin expression in the heart is safe,...
متن کاملMeasuring mitochondrial respiration in intact single muscle fibers.
Measurement of mitochondrial function in skeletal muscle is a vital tool for understanding regulation of cellular bioenergetics. Currently, a number of different experimental approaches are employed to quantify mitochondrial function, with each involving either mechanically or chemically induced disruption of cellular membranes. Here, we describe a novel approach that allows for the quantificat...
متن کاملEffects of Mechanical Over-Loading on the Properties of Soleus Muscle Fibers, with or without Damage, in Wild Type and Mdx Mice
Effects of mechanical over-loading on the characteristics of regenerating or normal soleus muscle fibers were studied in dystrophin-deficient (mdx) and wild type (WT) mice. Damage was also induced in WT mice by injection of cardiotoxin (CTX) into soleus muscle. Over-loading was applied for 14 days to the left soleus muscle in mdx and intact and CTX-injected WT mouse muscles by ablation of the d...
متن کاملInhibitory Control Over Ca2+ Sparks via Mechanosensitive Channels Is Disrupted in Dystrophin Deficient Muscle but Restored by Mini-Dystrophin Expression
BACKGROUND In dystrophic skeletal muscle, osmotic stimuli somehow relieve inhibitory control of dihydropyridine receptors (DHPR) on spontaneous sarcoplasmic reticulum elementary Ca(2+) release events (ECRE) in high Ca(2+) external environments. Such 'uncontrolled' Ca(2+) sparks were suggested to act as dystrophic signals. They may be related to mechanosensitive pathways but the mechanisms are e...
متن کاملDisruption of action potential and calcium signaling properties in malformed myofibers from dystrophin-deficient mice
Duchenne muscular dystrophy (DMD), the most common and severe muscular dystrophy, is caused by the absence of dystrophin. Muscle weakness and fragility (i.e., increased susceptibility to damage) are presumably due to structural instability of the myofiber cytoskeleton, but recent studies suggest that the increased presence of malformed/branched myofibers in dystrophic muscle may also play a rol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 94 12 شماره
صفحات -
تاریخ انتشار 2008